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Abstract. We use the AV8’ nucleon-nucleon potential renormalized with the Lee-Suzuki prescription with
the Hybrid Multideterminant scheme to evaluate energies of some light nuclei. The Lee-Suzuki prescription
is used to evaluate the the two-body matrix elements up to 6 major oscillator shells in the lab frame. The
Hybrid Multideterminant scheme is used to deal with the nuclear-structure problem. The results obtained
for 6Li, 12C and 16O are compared with the results obtained with other methods. The results suggest a
reasonable convergence of the renormalization prescription for 6 major shells.

PACS. 21.60.Cs Shell model – 21.30.Fe Forces in hadronic systems and effective interactions – 27.20.+n
6 ≤ A ≤ 19

1 Introduction

A major problem in nuclear physics is the understanding
of the structure of nuclei starting from nucleon-nucleon
potentials that reproduce the nucleon-nucleon scattering
data and the properties of the deuteron. There are nowa-
days many high-accuracy nucleon-nucleon potentials that
reproduce these data, such as the Argonne V18 (ref. [1]),
the Nijmegen Nij93 (ref. [2]), the CD-Bonn (ref. [3]), the
Idaho (ref. [4]) potentials, to mention a few. Several the-
oretical methods have been used, and are currently in
use, to solve the problem of the Schroedinger equation.
Among the others, the Green’s Function Monte Carlo
method (ref. [5]), by which expectation values are eval-
uated exactly within a statistical uncertainty, has been
shown to be applicable up to A = 12. The coupled cluster
method (refs. [6,7]), and the No-Core Shell Model method
(NCSM) (refs. [8–11]). With this last method, first, the
nucleon-nucleon potential (and in many cases a genuine
three-nucleon potential) is renormalized so as to be able to
work within a reasonably small shell model space (ref. [8]),
shell model techniques are then used to extract low-energy
properties of nuclei.

The key idea of NCSM is to use a truncated harmonic-
oscillator basis. An effective Hamiltonian, appropriate for
this truncated basis, must therefore be derived. In order
to derive the effective Hamiltonian, an harmonic-oscillator
potential acting on the center of mass is added to the
Hamiltonian Ĥ, without affecting the intrinsic properties
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of the nucleus. The infinite shell model space is divided
into a finite active model space (the P -space) and the ex-
cluded space (the Q-space) with the aid of projectors P
and Q. A unitary transformation X is then applied to
the Hamiltonian that decouples the P -space from the Q-
space, that is, QX†ĤXP = 0, in the same spirit of the
Lee-Suzuki method (refs. [12–14]). The effective Hamilto-

nian is then PX†ĤXP . Once the effective Hamiltonian
has been derived, energies and expectation values of low-
energy eigenstates are evaluated with standard shell model
diagonalization techniques.

Recently, we have studied a scheme to determine the
low-energy eigenstates (applied however only to the first
J = 0 and J = 2 eigenstates) of a shell model Hamil-
tonian (ref. [15]). This scheme is a hybrid method be-
tween the Quantum Monte Carlo Diagonalization method
(refs. [16–18]) and the VAMPIR method (refs. [19,20]).
With this method, the eigenstates of a shell model Hamil-
tonian Ĥ are written as a linear combination of Slater
determinants,

|ψ〉 =
Nw
∑

α=1

gα|φ, α, n〉|φ, α, p〉. (1)

The labels n and p refer to neutrons and protons, respec-
tively, and |φ, α, τ = n, p〉 is a “deformed” Slater determi-
nant built from the “deformed” creation operators

c†n(α, τ) =

Ns
∑

i=1

Ui,n(α, τ)a
†
i,τ . (2)
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That is,

|ψ〉 =
Nw
∑

α=1

gα
∏

τ=n,p

c†1(α, τ)c
†
2(α, τ) . . . c

†
Nτ

(α, τ)|0〉 =

Nw
∑

α=1

gα
∏

τ=n,p

∑

i1i2...iNτ

Ui1,1(α, τ)Ui2,2(α, τ) . . .

×UiNτ
,Nτ

(α, τ)a†i1,τa
†
i2,τ

. . . a†iNτ
,τ |0〉, (3)

with |0〉 being the particle vacuum, Nτ the number of
particles for each species. The label i refers to the Ns

spherical single-particle states and the complex coeffi-
cients Ui,n(α, τ) are determined by minimizing the en-
ergy. No a priori assumptions are made concerning the
structure of the Slater determinants. Some constraints
to the arbitrary form of eq. (1) can be imposed, pro-
vided the Hubbard-Stratonovich Transformation (HST)

(ref. [21]) applied to exp(−βĤ)|ref.〉 (|ref.〉 being some

starting Slater determinant and Ĥ being the Hamiltonian)
does not violate such constraints, in the same spirit of the
QMCD method. As it can easily be seen, for large β, the
HST applied to a starting Slater determinant gives the
ground state of Ĥ as a sum of Slater determinants. A pro-
jector to exact quantum numbers (e.g., angular momen-
tum, parity) can be conveniently applied (and usually is)
to eq. (1). As the number of wave functions Nw in eq. (1)
is increased, the HST implies that eq. (1) converges to the
ground state (for specified projected quantum numbers).
If the state of eq. (1) is kept orthogonal to the previously
determined eigenstate, eq. (1) will converge to the first ex-
cited state, in the same spirit of the EXCITED VAMPIR
approach (ref. [19]).

Rather than parameterizing the set of Slater deter-
minants in eq. (2) with the integration variables of the
Hubbard-Stratonovich transformation, we choose the gen-
eral parametrization of eq. (3) in terms of the complex
variables Ui,n(α, τ) and determine these coefficients with
the powerful energy minimization methods typical of
the VAMPIR methods, with some variants discussed in
ref. [15].

As well known, direct shell model diagonalization
methods are limited by the huge dimensionality of the
Hamiltonian matrix to be diagonalized (see for example
table 1 below). However, eqs. (1)-(3) do not depend on
the dimensionality of the Hilbert space. For a given single-
particle space, all possible spherical Slater determinants

a†i1,τa
†
i2,τ

. . . a†iNτ
,τ |0〉 appear. If the amplitude of these

spherical Slater determinants were completely arbitrary
(and not products) a single term of the type of eq. (3)
would be sufficient to solve the problem exactly. Equa-
tion (3) implies instead that these coefficients are of prod-
uct type (Ui1,1(α, τ) . . . UiNτ

,Nτ
(α, τ)) hence the need to

take several “deformed” Slater determinants. The HST,
however, ensures that if their number Nw is large enough,
eq. (1) converges to the ground state. The number of
deformed Slater determinants necessary to reach reason-
able convergence does not depend on the dimensionality
of the Hilbert space. It strongly depends on whether the

projector to good quantum numbers is applied. If eq. (10)
is used as a variational ansatz without the projectors, the
number Nw can easily reach several thousands. If a par-
tial projector is used (for example the projector to good
z-projection of the angular momentum and good parity),
Nw is of the order of few hundreds, and if the projector to
good angular momentum and parity is applied in eq. (1),
only several tens are necessary. Of course the number Nw

also depends on the desired degree of accuracy. If math-
ematically exact energies are computed, Nw would equal
the size of the Hilbert space. A reasonable level of accu-
racy is ∼ 100KeV.

The ansatz eq. (1) is sufficiently powerful to allow even
for the description of short-range correlations. In ref. [22]
the method has been applied to a schematic model of
fermions interacting with a short-range strongly repul-
sive potential and it has been shown that the probability
of having any two particles at distances comparable or
smaller than the range of the core, is negligible. This is
due to nearly complete cancellation of direct and exchange
contributions to the two-particle probability. In the cases
studied in this work, however, we use microscopically de-
rived two-body effective potentials, and this capability is
not essential.

These considerations provide a strong motivation to
apply this scheme to the nuclear-structure problem start-
ing from bare nucleon-nucleon potentials. In this work we
use the potential AV8’ (ref. [23]), which is the isospin-
conserving version of AV18 (of the electromagnetic part
only the isoscalar part of the Coulomb potential is retained
and the isovector and isotensor parts are discarded).

The calculation discussed in this work consists of sev-
eral steps. We first renormalize the nucleon-nucleon poten-
tial along similar lines of the NCSM. Then we first solve
the angular momentum (either full or only Jz projected)
and/or parity projected Hartree-Fock problem, then we
increase the number of wave functions in eq. (1) and deter-
mine the new ones with the energy minimization require-
ment. To end up with a small number of wave functions at
the end of the calculation, we often redetermine the previ-
ous ones since these were determined with a smaller num-
ber of Slater determinants, for example for Nw = 5 we
replace the Hartree-Fock wave function with a new Slater
determinant, and so on. Experience with this, and with
other potentials not reported in this work, has led us to
exclude single-particle wave functions with orbital angular
momentum larger than 4 from the single-particle space, at
least for the nuclei we studied and for the values of the os-
cillator frequency h̄Ω we have used. This is computation-
ally very useful since large l values contribute the most to
the size of the single-particle space and, as a consequence,
to the size of the Hilbert space. The correctness of this
assumption is justified also (rather than repeat the calcu-
lation for the energy) by looking at the fractional number
of particles in a given n, l orbit.

We stress that the calculations reported in this work
are not fully equivalent to the NCSM approach. In the
NCSM approach the many-body basis consists of all Nh̄Ω
excitations above the lowest unperturbed configuration, in
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order to ensure the exact separation between intrinsic and
center-of-mass spectrum. Instead, we work with a speci-
fied number of harmonic-oscillator major shells. Hence, we
consider a rather large number of Nh̄Ω excitations above
the lowest spherical configuration, but not all Nh̄Ω exci-
tations are included. Solely the ones that can be built
with a specified number of major shells. Moreover, we
consider only the intrinsic Hamiltonian Ĥint, rather than
Ĥint+βĤcm, where the center-of-mass Hamiltonian βĤcm

is added in order to shift at high energy the excitations
of the center of mass. Because of this approach to the
center-of-mass motion, we expect some differences in the
results compared to the NCSM approach. Once we fix the
single-particle space and the harmonic-oscillator potential,
the matrix elements of the intrinsic Hamiltonian are de-
termined by the Lee-Suzuki procedure and by the Talmi-
Moshinski transformation.

The outline of this paper is as follows. In sect. 2 we give
the details of the renormalized Hamiltonian and discuss a
subtle consequence of the treatment of the center of mass
and in sect. 3 we discuss the results.

2 The effective potential and the Lee-Suzuki

method

The first task is to evaluate the matrix elements of the
Hamiltonian once a set of major oscillator shells has
been selected. The single-particle space is comprised of
all harmonic-oscillator (HO) wave functions with orbital
quantum numbers n, l satisfying 2n+ l ≤ Nlab. We stress
at the outset that although the effective potential is ex-
tracted from the Hamiltonian containing an HO potential
acting on the center of mass (c.m.) as done in ref. [9] in
the NCSM approach, the Hamiltonian we use in the ac-
tual variational calculation is the intrinsic Hamiltonian.
We follow closely the notations and the method of ref. [9].
However, as explained in the introduction, we do not im-
pose any restriction on the number of excitations across
harmonic-oscillator shells as normally done in the NCSM.
More precisely, we take into account all possible excita-
tions that can be obtained with the selected single-particle
space.

The Hamiltonian for A particles is

Ĥ =

A
∑

i=1

p2
i

2m
+
∑

i<j

VN
(

rij
)

= Ĥint +
P 2
cm

2mA
, (4)

m being the nucleon mass, VN the nucleon-nucleon poten-
tial, rij is the distance between particles, Pcm is the total

momentum and Ĥint is the intrinsic Hamiltonian. As in
ref. [9], we add an harmonic potential to the center of
mass. That is, we take for the renormalization procedure

ĤΩ=Ĥint + Ĥcm=Ĥ +
1

2
mAΩ2R2

cm=

A
∑

i=1

hi +
∑

i<j

V
(A)
ij ,

(5)

with

V
(A)
ij = VN

(

rij
)

−
mΩ2

2A
r2ij , (6)

and

hi =
p2
i

2m
+

1

2
mΩ2r2i . (7)

Ĥcm in eq. (5) is the harmonic-oscillator Hamiltonian of
the center of mass. The renormalization prescription of
Lee and Suzuki consists in replacing the Hamiltonian of
eq. (5) with an effective Hamiltonian in the many-body
shell model space (the so-called P -space), which has the
same spectrum of the original Hamiltonian in the full
Hilbert space. A necessary condition is that the effective
Hamiltonian should not have matrix elements between the
model space and the excluded part of the Hilbert space
(the so-called Q-space). This is usually done with a cluster
approximation. At the level of two-particle cluster approx-
imation (ref. [9]), the Hamiltonian which is renormalized
is the A-dependent two-particle Hamiltonian

Ĥ12 = h1 + h2 + V
(A)
12 . (8)

At this level of approximation, the bare potential is re-
placed with an effective two-body potential which is de-
pendent on the particle number A and the harmonic-
oscillator frequency h̄Ω. Strictly, the exact procedure gen-
erates many-body forces. Since as the dimensionality of
the P -space is increased one tends to recover the origi-
nal bare Hamiltonian, these many-body forces become less
and less important. Therefore the two-particle cluster ap-
proximation is sufficiently accurate if by increasing the size
of the model space, the results for the energies remain con-
stant. The effective potential is most easily determined by
separating the center of mass and relative coordinates in
eq. (8) as done in ref. [9]. The P -space for the two-particle
system is comprised of all harmonic-oscillator wave func-
tions in the center of mass having quantum numbers n,
l satisfying 2n + l ≤ 2Nlab, while the Q-space of all HO
states not included in the P -space, up to 2n + l ≤ 200.
We included all possible j values, although j > 6 give a
negligible contribution. The required radial integrals were
evaluated using a large box of length up to 40 fm with
typically 2500 integration points.

For a discussion and the details of the renormalization
prescription we refer the reader to ref. [9] and references
in there. As discussed in the next section, the two-particle
cluster approximation seems to be reasonably accurate al-
ready at Nlab = 5, at least for the cases considered in this
paper.

Once the matrix elements of the renormalized two-
body Hamiltonian have been determined, we transform
the matrix elements to the laboratory frame using the
Talmi-Moshinky transformation brackets (TMB). We
have used the recent implementation given in ref. [24].
The intrinsic Hamiltonian is

Ĥint=
∑

i<j

[

V eff
ij +

1

A

[

(

pi − pj
)2

2m
+

1

2
mΩ2(~ri − ~rj)

2

]]

.

(9)
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The (~ri − ~rj)
2 in the above equation cancels out the cor-

responding term in eq. (6). The relevant transformation
law for the two-body matrix elements is the following. If
we consider the L-S coupling scheme (the early versions
of the computer programs used in this work were written
in this scheme), the transformation reads

〈

nalanblbLabSJT
∣

∣Ĥint
1,2

∣

∣nclcndldLcdSJT
〉

=
∑

nn′ll′λNL

〈nalanblb;Lab|nlNL;Lab〉

×〈nclcndld;Lcd|n
′l′NLcd;Lcd〉(−1)

Lab+Lcd

×

√

L̂abL̂cd

{

l S λ
J L Lab

}{

l′ S λ
J L Lcd

}

×
〈

nlSλT
∣

∣Ĥint
1,2

∣

∣n′l′SλT
〉

. (10)

In the above equation L̂ = 2L + 1. The quantum num-
bers n, l are the radial quantum number in the relative
coordinate and the relative orbital angular momentum, re-
spectively. N , L are the corresponding ones for the center
of mass. λ is the angular momentum in the center of mass
of the two particles.

In the j-j coupling scheme (implemented in the more
efficient computer programs used in this work), the above
matrix elements are transformed using the 9-j coupling
coefficients.

As mentioned in the introduction the ansatz of eq. (1)
is used with angular-momentum projectors (either partial
projectors to good Jz values or the full projector to good
values of J2 and Jz) and with the projector to good parity
(both not explicitly written down in eq. (1)). It is easy to
work with the projectors written in the laboratory frame.
However, since we use the intrinsic Hamiltonian, we should
use the projectors in the center-of-mass frame. That is, the
angular momentum we use, is the total angular momen-
tum (intrinsic + center of mass). However, since we deter-
mine the lowest eigenstates of the intrinsic Hamiltonian, in
the limit of a large number of Slater determinants, eq. (1)
must give an eigenstate of the intrinsic Hamiltonian, that
is, in this limit,

ψ(~r1, . . . , ~rA) = ψint(~r
′
1, . . . , ~r

′
A)φcm

(

~Rcm

)

, (11)

where ~r ′1, . . . , ~r
′
A are the position vectors of the nucle-

ons in the center-of-mass frame (we omitted the spin and

isospin indices for simplicity). The function φcm(~Rcm) is
not, in some obvious way, an eigenstate of the center-of-
mass harmonic-oscillator Hamiltonian, since this term is
not included in the variational treatment. For what we
know, it is simply a normalization constant, which can
only depend on the c.m. coordinates. The projectors are
the appropriate ones if the center of mass is in an S state.
Let us assume for the sake of argument that we are us-
ing the J2, Jz projector. If we are determining the states
with high excitation energy, than the intrinsic wave func-
tion could have an intrinsic angular momentum different
from the desired one. For the ground state, the above ob-
jection does not pose a problem, because the requirement
of energy minimization will generate the lowest intrinsic

energy. However, for excited states, it is necessary to eval-
uate the energy of the center of mass in order to rule out
the possibility that we are determining a wave function
with the lowest intrinsic state and an excited center-of-
mass wave function. As discussed in the next section, for
the excited states considered in this paper, we found that
φcm has an harmonic-oscillator energy close to the value
3h̄Ω/2 and hence it is almost in the 0S eigenstate. We
ascribe the small discrepancy to an imperfect minimiza-
tion, a not sufficiently large number of Slater determinants
and to the truncation of the single-particle space. There-
fore, the requirement that eq. (1) give the minimum of the
intrinsic energy for a given total angular momentum will
generate the correct intrinsic state provided the minimiza-
tion is exact and provided we are not looking for highly
excited eigenstates with low angular momemtum. For ex-
ample, if we would attempt to determine a highly excited
eigenstate with, say J = 2, we cannot exclude that we
would determine a D state for the center of mass and a
lowest J = 0 intrinsic state. Since we are interested in the
first few low-energy intrinsic states, this problem does not
appear. If we were interested in highly excited eigenstates,
it is safer to consider Ĥint+βĤcm, with a reasonably large
value of β (see also ref. [25]). Inaccuracies due to the finite
size of the space should become smaller as we increase the
number oscillator shells. We have used the intrinsic Hamil-
tonian, rather than Hint+βĤcm, since as we increase the
number of Slater determinants convergence is faster.

The standard method to exactly factorize the wave
function in an intrinsic wave function and a center-of-mass
wave function is by considering as a many-body basis all
possible Nh̄Ω excitations up to some Nmaxh̄Ω, since the
center-of-mass Hamiltonian preserves the number of oscil-
lator quanta. This however poses a conceptual problem.
The intrinsic Hamiltonian does not conserve the number
of oscillator quanta and therefore it can generate states
outside of the model space which violates the basic re-
quirement that the renormalized Hamiltonian should not
couple the model space with the excluded space. Consider
for example the case of 4He with all possible 4h̄Ω exci-
tations. There are non-zero matrix elements of the type
〈N = 2N = 1|Hint|N = 1N = 0〉, for example the an-
tisymmetrized coupled to J = 0, T = 0 matrix elements
〈1s1/2, 0p1/2|Hint|0s1/2, 0p1/2〉. Acting on a configura-
tion containing one nucleon in the N = 0 shell and 3 nu-
cleons in the N = 3 shell, of the type |(N = 0)1(N = 1)3〉,
it generates a configuration of type |(N = 1)3(N = 2)1〉
which is a 5h̄Ω excitation. The same matrix elements act-
ing on a configuration of the type |(N = 0)1(N = 1)2(N =
2)1〉 will generate a 6h̄Ω excitation. As the number of h̄Ω
excitation is increased the terms which couple the model
space and the excluded space will be less and less im-
portant. Similarly, in all approaches that use a specified
number of major shells (as the one used in this work), the
approximate treatment of the center of mass will become
increasingly accurate as more oscillator shells are included
in the model space.

In principle, the value of h̄Ω can be arbitrary. We
considered the value that minimizes approximately the
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Table 1. Dimensionality of the Hilbert space dH for for nuclei labeled by N and Z for several Jz and Nlab values. For Nlab = 5
only states with l ≤ 4 were kept.

N Z Jz Nlab dH N Z Jz Nlab dH

8 8 0 4 5.01889× 1018 8 8 0 5 3.36507× 1020

8 8 1 4 4.96969× 1018 8 8 1 5 3.33242× 1020

8 8 2 4 4.82493× 1018 8 8 2 5 3.23633× 1020

6 6 0 4 1.09991× 1015 6 6 0 5 2.47508× 1016

6 6 1 4 1.08602× 1015 6 6 1 5 2.44395× 1016

6 6 2 4 1.04538× 1015 6 6 2 5 2.35285× 1016

3 3 0 4 264, 638, 868 3 3 0 5 1.22122× 109

3 3 1 4 258, 315, 270 3 3 1 5 1.19202× 109

3 3 2 4 240, 224, 412 3 3 2 5 1.10847× 109

Hartree-Fock energy, as a function of h̄Ω. The value ob-
tained for a given Nlab was used also for the other choices
of Nlab. For

6Li, h̄Ω = 10MeV, for 12C, h̄Ω = 11MeV,
and for 16O, h̄Ω = 12MeV.

3 Results

In this section we shall discuss the results. For Nlab = 3
we have 80 nucleon states, for Nlab = 4, 140 nucleon states
and for Nlab = 5, excluding l > 4, we have 180 nucleon
states. The dimensionality of the Hilbert space (for a spec-
ified Jz) is shown in table 1, for the nuclei under study.
We omitted the single-particle states with l > 4 since these
single-particle states are never appreciably populated for
the nuclei and levels considered in this work.

We focused on heavy systems in the sp region because
of the large dimensionality of the Hilbert space, especially
for 16O.

Before discussing the results, we briefly recall how the
calculation has been performed, a more detailed discus-
sion can be found in ref. [15]. We use a partial projector
to good z-component of the angular momentum Jz and
parity. The number of Slater determinants needed to min-
imize the intrinsic energy strongly depends on the type of
projector. With the aforementioned projector we need few
hundred Jπ

Z Slater determinants. A full three-dimensional
angular-momentum projector would give more detailed in-
formation by changing the angular momentum and parity.
With the partial projector we obtain the lowest state with
a specified Jπ

z . The initial start is the Hartree-Fock solu-
tion. We progressively increase the set of Slater determi-
nants (addition step) by adding a trial Slater determinant
initially a 0h̄Ω with a random component (about 20%),
we optimize this added trial state with energy gradient
methods and with the Broyden-Fletcher-Goldfabr-Shanno
(BFGS) method (ref. [26]) as done in ref. [19]. Once the
energy has been minimized we vary anew all the Slater de-
terminants in the set several times using only the BFGS
method (recycling step). Once the energy no longer de-
creases, we increase the set of Slater determinants again
by adding one more state (typically this added state is
always the same) and we repeat the procedure by varying

again all members of the set. We alternate the addition
steps with the recycling steps. Since the recycling steps
can be time consuming (we have used personal comput-
ers), we apply it fully only if the set contains few members,
otherwise we apply it once the set contains several new
members. For sets with more than one hundred states this
recycling step is omitted and we apply only the addition
steps. The ansatz of eq. (1) is capable anyway to reach the
exact ground state (with the specified Jπ

z ) in the limit of
large number of Slater determinants. The final number of
Slater determinants strongly depends on whether this re-
cycling step is applied. Since, as we increase the set (even
for large sets the energy still decreases, although by small
amounts), we performed a final calculation with the final
set using the full three-dimensional angular momentum
and parity projector, in order to get rid of the small com-
ponents in the wave function having angular momentum
different from the desired one. In other words, the addi-
tion and recycling steps are of the type Variation After
(partial) Projection (VAP) and at the end we re-evaluate
the energies Projecting without Variation (PAV) (these
terms are not used here with the meaning usually given,
since they both will give the correct wave function with-
out model assumptions). This last PAV step decreases the
necessary number of Slater determinants by about a factor
of 2–3. If excited states with specified quantum numbers
are desired, only full angular-momentum projectors can be
used (and this PAV re-evaluation is not necessary), and or-
thogonalization against the previously determined eigen-
states must be performed (as in the EXCITED VAMPIR
method of ref. [19]). The convergence of the energies as a
function of the number of Slater determinants is smooth
for the VAP calculation and less so, but faster, for the
PAV phase.

We considered first 6Li. In fig. 1a we show the conver-
gence of the energies for the 1+ ground state and in fig. 1b
we show the corresponding PAV energies.

The energy convergence is very satisfactory. The final
VAP energies in MeV of fig. 1a are −28.06, −28.942 and
−29.008 for Nlab = 3, 4, 5, respectively. The final energies
of the PAV calculation are −28.258, −29.002 and −29.183
for Nlab = 3, 4, 5, respectively. The near overlap of the
Nlab = 4 and Nlab = 5 curves in fig. 1a and in fig. 1b shows
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Fig. 1.

nicely that the Lee-Suzuki renormalization prescription
converges rather rapidly already with 5 major oscillator
shells (Nlab = 4).

In principle the Lee-Suzuki method, if carried out ex-
actly, is as difficult as the full many-body problem. From a
two-body Hamiltonian, it generates two-body, three-body,
etc. forces. We include in our calculation only the two-
body part of the renormalized Hamiltonian. This is an ap-
proximation (the 2-particle cluster). As the model space is
increased (Nlab →∞) we recover the original bare Hamil-
tonian, that is, these many-body forces become more and
more irrelevant and the calculation becomes increasingly
exact. The fact that already with Nlab = 4 and Nlab = 5
we obtain nearly the same values points out that already
with 5 and 6 major shells these many-body forces have
a negligible effect. Even with 4 major shells the effect of
these effective many-body forces is less than 1MeV. The
exact limiting values for the energies are never exactly
reached (we would need a very large number of Slater de-
terminants). From the variation of the energies in the end
part of the curves, we estimate about one hundred KeV
of possible further decrease. This should be regarded as
a rough order of magnitude estimate. Interestingly, the
PAV calculation shows that not the all set of Slater deter-
minants obtained in the VAP phase, are necessary.
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For 6Li and with this potential, a GFMC calculation
was performed in ref. [27] giving a ground-state energy of
−28.15(3)MeV slightly higher than our result. It should
be stressed that in ref. [27] the bare nucleon-nucleon po-
tential has been used. In ref. [28] the NCSM was used for
this nucleus with a basis space up to 6h̄Ω excitations and
the obtained value is −28.406MeV.

We also evaluated the energy of the first 3+ state. In
fig. 2 we show the convergence of the energy for Nlab = 5.
In this case we have used the projector to good Jπ

z = 3+.
The reprojection to good Jπ = 3+ was not carried out in
this case since the gain in energy is not as pronounced as
in the cases with lower J values. Again we estimate about
one hundred KeV of possible further decrease. The value of
the energy for this state is E = −25.371MeV. This should
be compared with the GFMC calculation of ref. [5] which
gives for the first 3+ state an energy of −25.33(3)MeV and
with the NCSM calculation with up to 6h̄Ω excitations of
ref. [28] which gives an energy of −25.42MeV.

As the next case we considered the ground state of 12C.

The PAV curves for the convergence of the energy for
Nlab = 3 and Nlab = 5 are shown in fig. 3. The Nlab = 3
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Table 2. Fractional number of neutrons (protons) fn (fp) for the ground state of 16O and Nlab = 5 obtained with the first 98
Slater determinants.

n l j fn fp n l j fn fp

0 0 1/2 1.676911 1.671120 0 2 5/2 0.000524 0.000589

1 0 1/2 0.274256 0.277568 0 2 3/2 0.000269 0.000310

2 0 1/2 0.048696 0.051129 1 2 5/2 0.000295 0.000321

0 1 3/2 2.991101 2.983189 1 2 3/2 0.000159 0.000197

0 1 1/2 1.715886 1.706746 0 3 7/2 0.000077 0.000072

1 1 3/2 0.733862 0.739194 0 3 5/2 0.000061 0.000099

1 1 1/2 0.231867 0.239353 1 3 7/2 0.000068 0.000059

2 1 3/2 0.274324 0.276870 1 3 5/2 0.000055 0.000085

2 1 1/2 0.051536 0.053045 0 4 9/2 0.000017 0.000021

0 4 7/2 0.000025 0.000022

-150

-145

-140

-135

-130

-125

-120

 0  20  40  60  80  100  120

 E
n

e
rg

y
(M

e
V

)

Number of Slater determinants

  Energy of the ground state of O16 (PAV)

N_lab=3
N_lab=4
N_lab=5

Fig. 4.

case is computationally less demanding and we considered
200 Slater determinants in this case, because of slower
convergence. The final energies are in MeV, −85.479 and
−85.086 for Nlab = 3 and Nlab = 5, respectively. Again
Nlab = 5 (6 oscillator shells) seems to be a sufficiently large
space for the convergence of the renormalization prescrip-
tion. The ground-state energy for this nucleus obtained in
ref. [28] with No-Core Shell model method is −85.945MeV
including up to 4h̄Ω excitations. As mentioned in the in-
troduction, the Hamiltonian matrices in the NCSM and in
our method are not completely equivalent, but the agree-
ment is rather good. Both results are about 6MeV above
the experimental value, pointing out to the need of gen-
uine three-nucleon potentials.

As a last case we considered 16O. In fig. 4 we show
again the energy convergence for this nucleus.

As it can be seen, Nlab = 3 is inadequate for this
nucleus, the energy obtained is −146.86MeV, while for
Nlab = 4 and Nlab = 5 we obtained −140.864MeV
and −140.791, respectively. The experimental value is
−127.619MeV. The AV8’ potential overestimates the en-
ergy in this case, while in the previous one the binding
energy is underestimated. We attempted also to evalu-
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ate the location of the first 3− state (see fig. 5), but the
VAP energy, obtained for Nlab = 3 using 100 Slater de-
terminants is −127.242MeV giving an excitation of about
19MeV, too large compared with the experimental value
of 6.13MeV.

Similar difficulties for this state were encountered in
the coupled-cluster calculation of ref. [6], using a different
two-body potential. Because of such a strong discrepancy
with the experimental value the Nlab = 4, 5 calculations
were not carried out.

As mentioned in the previous section, we must test
the expectation values of the center-of-mass harmonic-
oscillator Hamiltonian in order to make sure that we are
evaluating the energy of an excited intrinsic state. For the
3+ state of 6Li, the expectation value of the center-of-mass
Hamiltonian is 〈Ĥcm〉 − 3h̄Ω/2 = 1.34MeV. For the first
3− state of 16O we obtained, for the appropriate value of
h̄Ω for this nucleus, 〈Ĥcm〉 − 3h̄Ω/2 = 1.75MeV. To the
extent that our wave functions of eq. (11) are eigenstates,

we conclude that φcm(~Rcm) is an S state. The above ex-
pectation values were evaluated using the projectors to
Jπ
z = 3+ and Jπ

z = 3− for 6Li and 16O, respectively.
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As mentioned at the beginning of this section we omit-
ted all single-particle states having l > 4. In table 2 we
show the fractional number of particles occupying the sin-
gle particle orbits n, l, j. As can be seen, the assumption
is well satisfied.

The small differences of the fractional number of neu-
trons and protons are a remnant of the fact the starting
Slater determinants for neutrons and protons are different.
As it can be seen, the population of high-l orbitals is neg-
ligible. From the table one can also notice that the shell
closure of N = 0 and N = 1 oscillator shells is broken.

In conclusion, we have presented in this work ab ini-
tio calculations of energies using the Hybrid Multideter-
minant method. The method can in principle be applied
also to heavier nuclei, still preserving its ab initio fea-
tures. Moreover, the method can easily be applied to open-
shell nuclei. Actually in the fp region, this method can
naturally describe collective phenomena induced by de-
formation, if present. So far, collective phenomena have
been described using phenomenologically adjusted effec-
tive potentials, rather than bare nucleon-nucleon poten-
tials. Other ab initio methods, except the coupled-cluster
method, cannot easily be used beyond the sp region, while
the computational effort in our method has a polynomial
dependence on the number of particles. In the future we
plan to extend the use of our method to other nucleon-
nucleon potentials and to other nuclei.
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